Phase retrieval for continuous Gabor frames on locally compact abelian groups
نویسندگان
چکیده
In this paper, we study continuous frames from projective representations of locally compact abelian groups type $$\widehat{G}\times G$$ . particular, using the Fourier transform on groups, obtain a characterization maximal spanning vectors. As an application, for G, compactly generated Euclidean group or local field with odd residue characteristic, prove existence vectors, hence phase retrievability, associated $$(\widehat{G}\times G)$$ -frames.
منابع مشابه
On component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملPseudoframe multiresolution structure on abelian locally compact groups
Let $G$ be a locally compact abelian group. The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$. Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level. Also, the construction of affine frames for $L^2(G)$ bas...
متن کاملFourier-like frames on locally compact abelian groups
We consider a class of functions, defined on a locally compact abelian group by letting a class of modulation operators act on a countable collection of functions. We derive sufficient conditions for such a class of functions to form a Bessel sequence or a frame and for two such systems to be dual frames. Explicit constructions are obtained via various generalizations of the classical B-splines...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Journal of Mathematical Analysis
سال: 2021
ISSN: ['1735-8787', '2662-2033']
DOI: https://doi.org/10.1007/s43037-020-00118-2